A Factored Co-morbidity Approach for Modelling CKD Progression

Norman Poh¹, Simon Bull¹, Santosh Tirunagari¹, Christopher Farmer², Nicholas Cole³ and Simon de Lusignan³

1: Department of Computer Science, University of Surrey

2: East Kent Hospitals University NHS Foundation Trust

3: Department of Clinical and Experimental Medicine, University of Surrey

Introduction

One of the key challenges in understanding CKD progression is its multifaceted aetiology. This is evident as it is commonly observed that hypertension, anaemia, heart disease and diabetes are common co-morbidities of CKD. In other words, the existence of co-morbidities can potentially alter the risk of CKD progression, e.g. from stage 3 to 5. Similarly, treatment for one disease may be detrimental to kidneys. Unfortunately, "flat" risk models such as logistic regression, e.g. as implemented by the QKidney score and many similar risk models, are not designed to extract the rich structure induced by a multitude of co-morbidities, the state of which are often captured in routinely collected patient data.

Clinical relevance

We consider three contexts

1. Extracted data: carefully curated and prepared data, which are typical in clinical trials and register data

Contact:

N.Poh@surrey.ac.uk

- 2. Clinical/primary care data: routinely collected coded data from clinics/GPs which are encounter-based
- 3. Hospital/secondary care data: episode-based data, coded in ICD

We revisit the modelling of CKD progression by proposing a Bayesian network that has a certain regular structure, which has attractive properties such as tractability and efficient computation. The risk of progression to more severe CKD stages can be inferred not only from eGFR but signs and symptoms (s) related to kidney impairment, while causality of CKD is captured by risk factors (r) and treatment strategies (t).

CKD questions

- **1. Case finding**: typically used for calculating CKD prevalence. The detection accuracy differs depend on context (primary care, community care, someone who turns up in A&E?)
- **2. Estimating CKD risk**: For screening a population with yet undiagnosed CKD, typically applied to population at risk of CKD, e.g., diabetes.
- **3. Determining CKD stages**: applied to a population who have confirmed CKD. Current solution: KDIGO guidelines
- 4. Estimating CKD progression risk:
 - In routine follow-up of mild CKD patients (stages 1 and 2) in primary care.
 Specifically, progression into stage 3 triggers clinical interventions
 - Follow-up of CKD patients (stages 1-3) who progress into stages 4&5

Bayesian networks

List of variables

CVD, PVD, etc.

Variable Meaning

- Covariates, e.g., age, sex, index of multiple
 deprivation
- risk factors, heart attack, angina, stroke or TIA;
 kidney stones: Family history of CKD: history of kidney

Qkidney score
(http://www.qkidney.org)

Results: Formulated questions

1. Is this a CKD patient?

Context	Input variables	Output variables	Algorithm
Extracted data	$\{r_0, t_0, s_0, m_0, d_0, g\}$	Binary output: CKD=yes, CKD=no	Deterministic: Rules based
Primary care	Read codes of $\{r_0, t_0, s_0, d_0\}$, and $\{m_0, g\}$	Binary output: CKD=yes, CKD=no	Deterministic: Rules basedProbabilistic: Logistic regression
Secondary care	ICD10 codes of $\{r_0, t_0, s_0, d_0\}$, and $\{m_0, g\}$	Binary output: CKD=yes, CKD=no	Deterministic: Rules basedProbabilistic: Logistic regression

2. Given a non-CKD patient, what is her risk of contracting CKD?

Context	Input variables	Output variables	Algorithm
Extracted data	$\{r_0, t_0, s_0, m_0, d_i \forall_i\}$ plus covariates, c	Binary output: CKD=yes, CKD=no	 Probabilistic: Logistic regression
Primary care	Read codes of $\{r_0, t_0, s_0, d_i \forall_i\}$, and $\{m_0, g\}$ plus covariates, c	Binary output: CKD=yes, CKD=no	 Probabilistic: Logistic regression
Secondary care	ICD10 codes of $\{r_0, t_0, s_0, d_i \forall_i\}$, and $\{m_0, g\}$ plus covariates, c	Binary output: CKD=yes, CKD=no	 Probabilistic: Logistic regression

3. Given a CKD patient, what is her CKD stage?

Context	Input variables	Output variables	Algorithm
Extracted data	Kidney impairments r_0 and recent eGFR values: $\{g\}$	Ordinal output: CKD stages 1—5	Deterministic: KDIGO
Primary care	Read codes of kidney impairments and $\{r_0\}$	Ordinal output:	 Deterministic: KDIGO Probabilistic approach:
	and recent eGFR values: $\{g\}$	CKD stages 1—5	broken sticks model
Secondary care	kidney impairments and $\{r_0\}$ and recent	Ordinal output:	 Deterministic: KDIGO Probabilistic approach:
	eGFR values: $\{g\}$	CKD stages 1—5	broken sticks model

in	npairments

	mpannents
t_0	Treatments for CKD
<i>s</i> ₀	Signs and symptoms for CKD, kidney impairments
g	eGFR (estimated Glomerular Filtration Rate)
g'	eGFR slope (annual rate change)
m_0	Laboratory measurements known to covary with CKD,
	phosphate
d_0	disease diagnosis related to CKD, e.g.,
	presence/absence of CKD and/or its stages
d_i	Each <i>i</i> indicates one CKD comorbidity, which can be a
	cause or through association. E.g., diabetes, heart
	failure, rheumatoid arthritis, hypertension, anaemia,

	Postcode:	
_(Clinical information -	
	ciment mitorimuton	

-Clinical information-
Smoking status: non-smoker
Do you currently have
diabetes? No 🔻
heart failure?
peripheral vascular disease? 📃
high blood pressure requiring treatment?
rheumatoid arthritis? (not osteoarthritis/"wear and tear")
systemic lupus erythematosis (SLE)?
Have you had
a heart attack, angina, stroke or TIA 📃
kidney stones?
-Family history
Do immediate family* have kidney disease?
Leave blank if unknown
Body mass index
Height (cm):
Weight (kg):
Systolic blood pressure (mmHg):
Calculate risk over 5 🔻 years. Calculate risk

 r_i

D

 S_i

4. Given a CKD patient and her existing CKD stage, what is her future stage?

Context	Input variables	Output variables	Algorithm
Extracted data	Variables in Qkidney score	Binary output: progress to severe CKD stages or not	 Logistic regression
Primary care	Read codes of $\{r_0, t_0, s_0, d_0\}$, and $\{m_0, g\}$ plus covariates plus eGFR slope	Binary output: progress to severe CKD stages or not	 Logistic regression and more advanced models
Secondary care	$\{r_0, t_0, s_0, d_0\}$, and $\{m_0, g\}$ plus covariates plus eGFR slope	Binary output: progress to severe CKD stages or not	 Logistic regression and more advanced models

Discussion

- Current risk models are 'flat' and do not exploit the rich information captured in patient records. The proposed factored co-morbidity approach offers a natural next step whilst being tractable and efficient in computation.
- Not all clinical questions have been systematically addressed using computational models
- The merit of the proposed approach will be investigated as part of the MRC Modelling CKD project using data extracted from the Royal College of GPs database.

 r_i

D – 1

 S_i

www.modellingCKD.org

 r_i

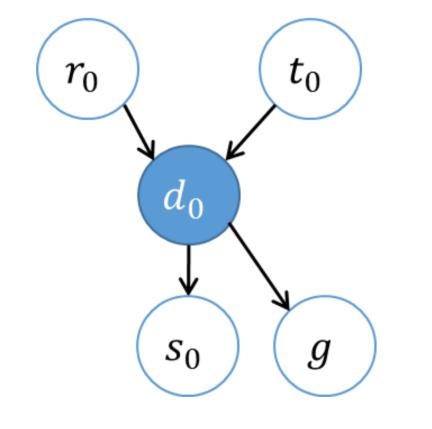
 S_i

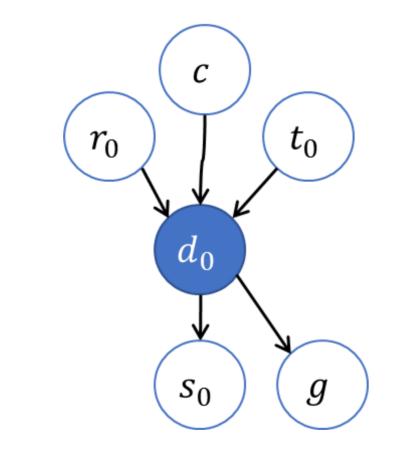
 ι_i

= AKI

Acknowledgement: This project entitled "Modelling the Progression of CKD" was awarded to NP by the Medical Research Council, under the New Investigator Grant Scheme MR/M023281/1.

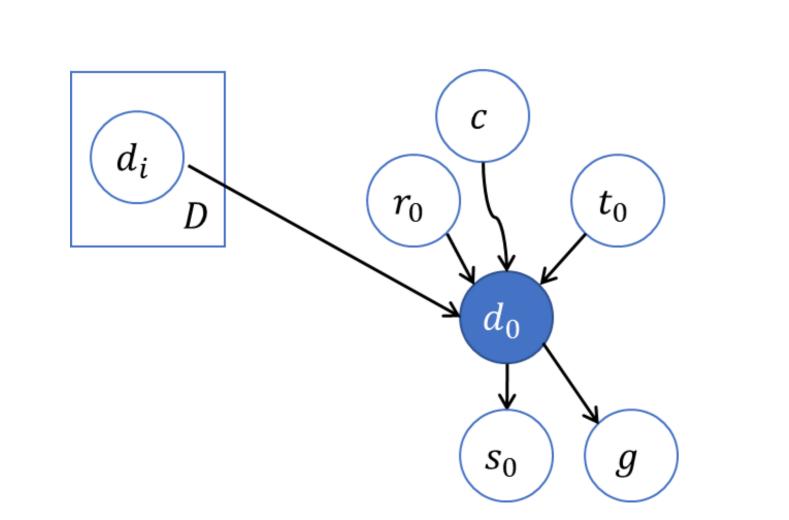
τ





(a) Basic model

(b) Basic model with covariates



(c) Model with comorbid diagnosis

(d) General model with unobserved comorbid diagnosis

 r_0

 s_0

 t_0

g

ti

(e) Modified model for predicting CKD patients considering the risks of commonly associated co-morbidities, including acute kidney injury

 s_0

С

 t_0

g

 r_0